A New High-Order Immersed Interface Method for Multi-Phase Flow Simulation

نویسنده

  • Xiaolin Zhong
چکیده

Numerical simulation of two-phase flow with imbedded interface of discontinuity is challenging in two major aspects. First, the interface can undergo change, merge and breakup during the course of the simulation. Examples of current successful methods in modeling flow with interface are, among others, the volume-of-fluid method, fronttracking method, and level-set method. Second, flow variables and their derivatives can be discontinuous across the interface. This discontinuity poses severe limitation on the accuracy of commonly used numerical methods. Current available methods in treating the interface discontinuity, such as the immersed boundary method and the ghost fluid method, are mostly first order accurate. Though the immersed interface method of LeVeque and Li (1994) can be globally second order, it is often difficult to apply to complex multi-dimensional flow. This paper presents a new high-order immersed interface method for elliptic equations with imbedded interface of discontinuity. The new method can be arbitrarily high-order accurate, and it can be easily applied to practical two-phase flow because only the physical jump conditions for variables and their first derivatives are needed in the finite difference formulas. In addition, the new interface difference formulas are expressed in a general explicit form so that they can be applied to different multi-dimensional problems without any modification. The new interface algorithms of up to accuracy have been tested for one and two-dimensional elliptic equations with imbedded interface. The extension to practical two-phase flow applications will be presented in a future paper.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A new high-order immersed interface method for solving elliptic equations with imbedded interface of discontinuity

This paper presents a new high-order immersed interface method for elliptic equations with imbedded interface of discontinuity. Compared with the original second-order immersed interface method of [R.J. LeVeque, Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients and singular sources. SIAM J. Numer. Anal. 31 (1994) 1001–25], the new method achieves arbitr...

متن کامل

A preconditioned solver for sharp resolution of multiphase flows at all Mach numbers

A preconditioned five-equation two-phase model coupled with an interface sharpening technique is introduced for simulation of a wide range of multiphase flows with both high and low Mach regimes. Harten-Lax-van Leer-Contact (HLLC) Riemann solver is implemented for solving the discretized equations while tangent of hyperbola for interface capturing (THINC) interface sharpening method is applied ...

متن کامل

Numerical Simulation of Two-phase Flows Using a Hybrid Volume of Fluid and Immersed Boundary Method

In this paper a simulation model is presented for the Direct Numerical simulation (DNS) of multiphase flow. This method combines the Volume of fluid model and Immersed Boundary method in order to investigate water-oil flow-pattern. The simulations were carried out on structured cartesian adaptive mesh refinement (SAMR), where the the Immersed Boundary represents the circular tube via Direct For...

متن کامل

Two Phase Level-Set/Immersed-Boundary Cartesian Grid Method for Ship Hydrodynamics

Recent progress at IIHR on the development of CFDShip-Iowa version 6 is presented. Current focus is on a sharp interface Cartesian grid method for the large-eddy simulation (LES) of turbulent two-phase incompressible flows. In this method, the level set formulation for two-phase incompressible flows is adopted. The density and pressure jump conditions across the interface (the latter due to sur...

متن کامل

A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries

A sharp interface immersed boundary method for simulating incompressible viscous flow past three-dimensional immersed bodies is described. The method employs a multi-dimensional ghost-cell methodology to satisfy the boundary conditions on the immersed boundary and the method is designed to handle highly complex three-dimensional, stationary, moving and/or deforming bodies. The complex immersed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006